A Quantitative Macroevolutionary Approach to Exploring the Pharmaceutical Drug Crisis

Erik Gjesfjeld¹, Jonathan Chang¹, Daniele Silvestro² & Michael E. Alfaro¹

¹UCLA, ²University of Gothenberg

Evolution 2016 - Austin, TX
The Pharma “Productivity Crisis”

IS THERE A PRODUCTIVITY CRISIS IN PHARMACEUTICAL R&D?
Massimo Riccaboni, Professor of Economics and Management, University of Trento, Trento, IT

Is the Pharmaceutical Industry in a Productivity Crisis?
Iain M. Cockburn, Boston University and NBER

Researchers say pharmaceutical ‘innovation crisis’ is a myth
Updated: AUGUST 10, 2012 — 10:12 AM EDT
A macroevolutionary approach

• Examining productivity is a question of diversification
 – Innovation = Origination
 – Discontinuation = Extinction

• Research Questions
 – What is the rate of drug origination and extinction over the history of the drug industry?
 – What are the main factors that influence origination and extinction rates?
Data

- **Drugs@FDA**
 - Online database of all FDA approved drugs
 - 1,263 New Molecular Entities (NMEs)
 - 1,092 drugs used in our analysis (completeness)

- **Origination** = FDA approval date for a New Drug Application

- **Extinction** = Date of last correspondence from FDA for discontinued drugs
 - No extinction date for existing drugs (85%)
<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Sponsor</th>
<th>Origination Date</th>
<th>Extinction Date</th>
<th>ATC</th>
</tr>
</thead>
<tbody>
<tr>
<td>abacavir_sulfate</td>
<td>Viiv Healthcare</td>
<td>17.05</td>
<td>0</td>
<td>B01AC13</td>
</tr>
<tr>
<td>abarelix</td>
<td>Speciality</td>
<td>12.10</td>
<td>10.32</td>
<td>B02BC01</td>
</tr>
<tr>
<td>abiraterone_acetate</td>
<td>Janssen Biotech</td>
<td>4.68</td>
<td>0</td>
<td>C01EB13</td>
</tr>
<tr>
<td>acamprosate_calcium</td>
<td>Forest Labs</td>
<td>11.43</td>
<td>0</td>
<td>V03AA03</td>
</tr>
<tr>
<td>acarbose</td>
<td>Bayer</td>
<td>20.33</td>
<td>0</td>
<td>A10BF01</td>
</tr>
</tbody>
</table>

Dates are in years from present
An occurrence based approach

• Model drugs as stratigraphic lineages with the approval and discontinuation dates as the times of first and last occurrence

• Advantages to cultural evolutionary research
 – Dates of origination and extinction are easier to obtain and more reliable than trait list
 – Does not require constructing a tree topology
 – Models rates in continuous time
• Jointly estimates rates of origination and extinction from occurrence data

• Utilizes a birth-death model
 – More accurately reflects process of innovation

• Can compare correlations between various factors that might influence diversification rates
 – PyRate Continuous
• What factors might influence rates of origination?

1. Research & Development
2. # of Drug Companies
3. # of Existing NMEs
4. # of Prescriptions Filled
5. # of New Drug Applications
6. Medicaid Enrollees
• What factors might influence rates of origination?

1. Research & Development
2. # of Drug Companies
3. # of Existing NMEs
4. # of Prescriptions Filled
5. # of New Drug Applications
6. Medicaid Enrollees
Conclusions

• What is the rate of drug origination and extinction?
 – Declining origination rate, stable extinction rate

• What are the main factors that influence origination rates?
 – Research and Development costs

• Not a “innovation crisis” but a soaring R&D cost crisis
Contributions to Cultural Evolutionary Research

• A quantitative & model-based perspective on the dynamics of diversification
 • Incorporates both origination and extinction
 • Can better utilize the growing amount of “big” cultural data

• Ability to test specific hypotheses about what might be influencing these diversity dynamics
Questions?

Special thanks to:

Michael Alfaro
Jonathan Chang
Christopher Kelty
Daniele Silvestro

Drug Innovation Research Team
Kelsey Flaherty
Rebeka Davison
Niyta Patel
Nikhil Gupta
Jennifer Huang